An Auslander-buchsbaum Identity for Semi- Dualizing Modules
نویسنده
چکیده
منابع مشابه
On Auslander-Buchsbaum - type formulas
We give a short and simple argument that proves, in a uniform way, the Auslander-Buchsbaum formula, relating depth and projective dimension, and the Auslander-Bridger formula, relating depth and G-dimension. Moreover, the same type of argument quickly reproves the fact that, in the degrees above the codepth, the syzygy modules of a finite module over a commutative local ring have no free summan...
متن کاملA noncommutative generalization of Auslander's last theorem
In 1966 [1], Auslander introduced a class of finitely generated modules having a certain complete resolution by projective modules. Then using these modules, he defined the G-dimension (G ostensibly for Gorenstein) of finitely generated modules. It seems appropriate then to call the modules of G-dimension 0 the Gorenstein projective modules. In [4], Gorenstein projective modules (whether finite...
متن کاملGorenstein homological dimensions with respect to a semi-dualizing module over group rings
Let R be a commutative noetherian ring and Γ a finite group. In this paper,we study Gorenstein homological dimensions of modules with respect to a semi-dualizing module over the group ring . It is shown that Gorenstein homological dimensions of an -RΓ module M with respect to a semi-dualizing module, are equal over R and RΓ .
متن کاملFoxby Duality and Gorenstein Injective and Projective Modules
In 1966, Auslander introduced the notion of the G-dimension of a finitely generated module over a Cohen-Macaulay noetherian ring and found the basic properties of these dimensions. His results were valid over a local Cohen-Macaulay ring admitting a dualizing module (also see Auslander and Bridger (Mem. Amer. Math. Soc., vol. 94, 1969)). Enochs and Jenda attempted to dualize the notion of G-dime...
متن کاملOn a Depth Formula for Modules over Local Rings
We prove that for modules M and N over a local ring R, the depth formula: depthR M + depthR N − depthR = depthR Tor R s (M,N) − s, where s = sup{i | Tor i (M,N) 6= 0}, holds under certain conditions. This adds to the list cases where the depth formula, which extends the classical Auslander-Buchsbaum equality, is satisfied.
متن کامل